Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Folia Microbiol (Praha) ; 69(1): 41-57, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37672163

RESUMO

The asymmetrical distribution of the cellular organelles inside the cell is maintained by a group of cell polarity proteins. The maintenance of polarity is one of the vital host defense mechanisms against pathogens, and the loss of it contributes to infection facilitation and cancer progression. Studies have suggested that infection of viruses and bacteria alters cell polarity. Helicobacter pylori and Epstein-Barr virus are group I carcinogens involved in the progression of multiple clinical conditions besides gastric cancer (GC) and Burkitt's lymphoma, respectively. Moreover, the coinfection of both these pathogens contributes to a highly aggressive form of GC. H. pylori and EBV target the host cell polarity complexes for their pathogenesis. H. pylori-associated proteins like CagA, VacA OipA, and urease were shown to imbalance the cellular homeostasis by altering the cell polarity. Similarly, EBV-associated genes LMP1, LMP2A, LMP2B, EBNA3C, and EBNA1 also contribute to altered cell asymmetry. This review summarized all the possible mechanisms involved in cell polarity deformation in H. pylori and EBV-infected epithelial cells. We have also discussed deregulated molecular pathways like NF-κB, TGF-ß/SMAD, and ß-catenin in H. pylori, EBV, and their coinfection that further modulate PAR, SCRIB, or CRB polarity complexes in epithelial cells.


Assuntos
Coinfecção , Infecções por Vírus Epstein-Barr , Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Infecções por Vírus Epstein-Barr/microbiologia , Infecções por Vírus Epstein-Barr/patologia , Herpesvirus Humano 4/genética , Helicobacter pylori/genética , Coinfecção/microbiologia , Polaridade Celular , Neoplasias Gástricas/genética , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia , Proteínas Virais , Infecções por Helicobacter/microbiologia
2.
Nanomaterials (Basel) ; 8(2)2018 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-29360759

RESUMO

During a heart failure, an increased content and activity of nucleoside diphosphate kinase (NDPK) in the sarcolemmal membrane is responsible for suppressing the formation of the second messenger cyclic adenosine monophosphate (cAMP)-a key component required for calcium ion homeostasis for the proper systolic and diastolic functions. Typically, this increased NDPK content lets the surplus NDPK react with a mutated G protein in the beta-adrenergic signal transduction pathway, thereby inhibiting cAMP synthesis. Thus, it is thus that inhibition of NDPK may cause a substantial increase in adenylate cyclase activity, which in turn may be a potential therapy for end-stage heart failure patients. However, there is little information available about the molecular events at the interface of NDPK and any prospective molecule that may potentially influence its reactive site (His118). Here we report a novel computational approach for understanding the interactions between graphene oxide (GO) and NDPK. Using molecular dynamics, it is found that GO interacts favorably with the His118 residue of NDPK to potentially prevent its binding with adenosine triphosphate (ATP), which otherwise would trigger the phosphorylation of the mutated G protein. Therefore, this will result in an increase in cAMP levels during heart failure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA